BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era

433

Composing Frankensteins: Data-Driven Design
Assemblies through Graph-Based Deep Neural Networks

IMDAT AS
University of Hartford

PRITHWISH BASU
Raytheon BBN Technologies

Over the last five years, machine learning and Al became
exceedingly popular due to significant developments in
the study of deep neural networks (DNN) or deep learning.
Current research on DNNs focuses mainly on image and
audio-based applications, ranging from self-driving cars, to
virtual assistants such as Siri, to all kinds of online recom-
mendation systems. Example applications include image
classification, prediction of user choices, and generation of
new images. In this paper, we present an alternative graph-
based DNN approach to generate new conceptual designs.
We trained DNNs with residential design represented
through attributed graphs. We discovered essential building
blocks based on performance criteria and composed them
into new user-desired assemblies - aided by learned infor-
mation about the proximity of various design components
in latent vector space.

INTRODUCTION

There have been extensive developments in the field of
deep learning over the last few years: Deep neural networks
(DNN) have been successfully used on a wide range of real-
world applications. In contrast to rule-based systems, DNNs
do not need to be programmed upfront, but can decipher
rules through examining large amounts of data.! For example,
one can train a DNN with millions of cat images and use it
to label cats in new images. This is especially important for
self-driving cars, where the discrimination of objects, such
as other cars, trucks, walking/biking people, etc. in real-time
video feeds will make the difference between cars safely
manoeuvring through traffic or not.

In this paper, we investigate a novel application of deep learn-
ing to generate conceptual designs for architectural projects.
Unlike current research that focuses mainly on image, audio,
or text-based DNNs, we explored graph-based DNNs. We
trained DNNs to dissect home designs into essential building
blocks and re-compose them into new assemblies. Our early
results reveal that DNNs are capable of extracting function-
driven building blocks from design data. We merged desirable
building blocks into larger structures using tools from graph-
theory and proximity information of nodes in latent vector
space. While not a focus of the current research, we propose

SIDDHARTH PAL
Raytheon BBN Technologies

methods of evaluating generated new compositions with
human input through crowdsourcing, e.g. Mechanical Turk.
The evaluations could be used as training data to employ neu-
ral networks to define user-based fitness functions that over
time can qualitatively evaluate generated designs.?

METHODS AND TECHNIQUES

DNNs are typically trained with significant amounts of real-
world data. They do not need to be programmed upfront
but can learn patterns and relationships through the train-
ing process with a given dataset, i.e. “training set.” This is in
contrast to traditional methods of generative design, such
as shape grammars, where one can generate new compo-
sitions through applying certain prescribed design rules. In
order to perform such task, however, one has to know all
building blocks and set of rules needed to generate design
variations.>* For example, a discursive shape grammar has
been put forth to mimic Alvaro Siza’s style of architecture
and generate variations of his Malagueira houses.> DNNs,
however, do not require one to set up rules beforehand, but
can simply detect them through the training process. In other
words, if there are enough samples of Siza’s work in the train-
ing set, a DNN can learn known or latent rules that Siza may
have intentionally (or intuitively) applied in his work.

For this study, we used a neural network originally developed
to identify essential building blocks of chemical compounds,
which are strongly correlated with certain properties of the
compound.® Here the chemical compounds are represented
as graphs, i.e. nodes are atoms and edges are bonds, and the
building blocks are subgraphs. We used a supervised graph
convolutional neural network to discover these subgraphs
based on specific functional criteria. Once we unearthed the
subgraphs, we studied methods to merge them into larger
assemblies. We then developed techniques to close open-
ended nodes resulting during the merging process. We also
propose methods to add and potentially augment these
assemblies with additional auxiliary connections.

Figure 1illustrates the DNN architecture that was used to dis-
cover the building block subgraphs. In each layer of the DNN,
convolution is performed on the attributes of each node in

434 Composing Frankensteins: Data-Driven Design Assemblies through Graph-Based Deep Neural Networks

Target function value D

’ Linear regression l

> Representation of
'T‘ significant subgraphs
e (T I I 1T --[T11]
10 |
ok f .
Z| e Non-linearity o
= L
= E Hidden weights (trainable) =
g_ ':‘f ‘ Graph Convolution ‘
2| 3|e—
HE A
=2
B, IEEEEEER EEEE
Non-linearity ’ ‘ﬂ;{
®©
=l

Hidden weights (trainable)

Graph Convolution

SN

Input graph with attributes

Figure 1. DNN architecture for discovering building blocks, i.e. subgraphs,
from complete home designs.

the graph, by essentially summing the attribute values in its
neighbourhood in the graph, and then the result is multiplied
by hidden weights corresponding to that layer and some non-
linearities before being mapped to a probability distribution.
The probabilities in each layer contribute to a latent rep-
resentation vector of the attributes of the specific input
graph, which in turn is correlated with the target function
score via linear regression. For each increasing layer in the
DNN, contributions from larger neighbourhoods of each
node are accumulated and remembered within the “hid-
den weights.” Thus, if subgraph patterns are found among
nodes with certain types of attributes in an R-hop neigh-
bourhood of a node and these patterns correlate strongly
with a high target functional score, the DNN will remember
them in the hidden weights of the R-th layer after the train-
ing phase converges with a low value of root mean square
error (RMSE). Then, for a given r, we output subgraphs of
radius r that have a high linear regression coefficient and a
high activation score in the r-th layer neurons in the DNN.
These subgraphs are expected to correspond to building
blocks of commensurate size that correlate strongly with
high target functional scores.

Workflow of research: Figure 2 illustrates the research
workflow. On top, design data is fed into a DNN (#1), which
uncovers latent building blocks (#2) and maps nodes into

high-dimensional vector space (#3). These essential build-
ing blocks are then merged into new compositions (#4). The
resulting designs are put through an evaluation process,
where valid designs are identified. In the following section,
we discuss a case study.

DECOMPOSING AND RECOMBINING HOME DESIGNS

We trained the DNN with 15 home designs. Traditionally,
architecture is represented through drawings, e.g. plans,
sections, etc., or through more sophisticated and informa-
tion-rich building information models (BIM). However, for this
study, we represented architectural design using attributed
graphs. We focused on the representation of essential ele-
ments of architecture, i.e., spaces (or rooms) of various types
and their adjacency relationships that tend to occur in real
conceptual design. We collected design data from BIM mod-
els and converted them into graphs in the following manner:

¢ nodes represent particular room types, e.g. bedroom,
bathroom, etc., with attributes like area, volume,
perimeter, etc.

e edges between nodes represent the connection type
between rooms, e.g. a door connection, open connec-
tion, and vertical connections, e.g. stairs, ramps, etc.

Producing graphs from 3D models: We extracted design
data from BIM models through a Python plugin developed
for Autodesk Revit. We queried the digital models within the
Revit API, and generated graphs displaying available node and
edge conditions. We annotated the type of rooms, the type
of relationship between rooms, and the evaluation scores
based on various functional performance criteria, such as
human-provided scores for livability (rating how well the liv-
ing/family spaces were designed), or sleepability (rating how
well the bedroom quarters were designed), and so on. Even
though we limited our annotations to this narrow set of attri-
butes, graph representations can be easily expanded with
additional data, such as type of furniture, lighting fixtures,
color, etc. In order to represent such more detailed informa-
tion, one would need to create auxiliary nodes that show the
containment relationship within a subgraph. In short, graph
representations can be expanded to contain more details, if
those details are available.

Evaluating the training set: In order to set up the DNN,
we divided home designs into two datasets, one for train-
ing and the other for testing. The training set consisted of
twelve homes and the testing set of the remaining three.
We trained the DNN with both design data on homes and
their corresponding performance scores on livability. We
then implemented a regression test on the remaining three

BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era

435

Discover

Representations
Unsupervised deep learn-
ing of representations of
components in higher
dimensional vector space

(3]

Discover
Building Blocks
Supervised (function-
driven) latent structure

discovery by deep learning 9

Y

User

Specification\\

\

Functional ‘
requirements, /
constraints,

rules /

Composition of

Building Blocks

Merging building blocks;
Max-likelihood juxtaposition using

A4

p| components’ vector representations
or domain-specific rules

Generation of

Design Variations
Generate new designs using
an Information-theoretic semi-
supervised Deep Generative
Adversarial Network

(5]

\ 4
L—W—-] Generated P
—l:] Designs b
///////'7 7‘;;;\\\

/ Design

[Validation)

\ Filtering impossible /

structures
\,;;\;;77777// _—
F'_ﬂ Validated

- Designs

Figure 2. Workflow diagram of the deep learning system.

436 Composing Frankensteins: Data-Driven Design Assemblies through Graph-Based Deep Neural Networks

homes, which the DNN had not encountered before. The orig-
inal livability scores of the three homes were 51, 32, and 67
(on a scale of 1-100). The DNN predicted them as 51.2, 24.5,
and 67.2 in the test. The original scores we gave were based
on subjective evaluations given by reviewers, and therefore,
it was interesting to see that the DNN was able to predict
them with such accuracy.

Extracting essential building blocks: Afterwards, we used
the DNN to identify subgraphs that responded well to the
particular functional performance criteria, i.e. to detect
essential function-driven building blocks. For example, the
system detected the following building block as a high per-
forming subgraph responding to livability: [2_Kitchen_82’,
‘2_Foyer_39’,2_Pantry_26’,‘2_Terrace_1951’, ‘2_Bath_26/,
‘2_Living_479’, ‘2_Dining_308’]. The string, “2_Foyer_39”
means a foyer on the second floor with an area of 39sf. We
assume that the DNN classified this building block as high per-
forming due to the fact that it represents a living room that
is 479sf large, is situated next to a dining room, and opens up
to larger terrace.

Figure 3 shows three building blocks with high scores dis-
covered for each of two separate functional targets, i.e.,
livability and sleepability. To discover these building blocks,
DNNs were trained separately on each functional target but
with the same set of 15 design samples; and then a forward
pass through the trained DNN was used to identify build-
ing blocks of radius one or two with high regression and
activation scores.

Merging subgraphs to form new compositions: Next, we
merged the discovered building blocks into larger composi-
tions. If, for example, one wants to compose a new home that
performs high on both livability and sleepability, the DNN
simply discovers essential building blocks based on these
function targets, and merges them along edges via graph-
merging algorithms.” Few illustrative examples are shown in
figure 4. If there are nodes or edges that are typical in home
designs but are missing in discovered building blocks we can
add auxiliary nodes and edges to fill these gaps.

Adding additional nodes and edges through latent vec-
tor embeddings: The process of adding auxiliary edges and
nodes to new compositions in a mathematically principled
manner is based on a method of embedding rooms in various
design samples onto a latent vector space while preserving
both the similarity of room types across the design samples
and the proximity of various types of rooms appearing inside
each design (figure 5). This was performed by a DNN-based
method for representation learning on attributed graphs.
All design graphs with annotated room attributes (“type” in
this case) were merged into a single large graph and the lat-
ter was served as an input to a DNN. In this way, the DNN
learned a multi-dimensional vector representation of each

node. Vector representations of nodes depend on their type
as well as their relative proximity to other types of nodes. As
figure 5 demonstrates, nodes corresponding to each type of
room tend to cluster together since their types are identical.
More interestingly, however, is that certain clusters of nodes,
e.g. Bedrooms, tend to be closer to some clusters of nodes,
e.g. Closets, Baths, Balcony and Corridors, and not to other
clusters, such as Entrance, Dining etc. Thus, the latent embed-
ded vectors tend to reflect the average proximity of various
types of rooms in design samples. Also note that the clusters
corresponding to Living rooms, Dining rooms and Terraces
are very close to each other and overlapping at times. This is
because most of the design samples had these types of rooms
adjacent to each other. Vector embedding essentially exposes
such latent design rules.

We used vector embedding to discover auxiliary edges or
nodes that might be missing in new compositions, which
can be added later on. For example, building block H2 for
livability and H5 for sleepability shown in figure 4, have the
Dining node in common. We merged these two subgraphs
to form a larger graph along the Dining node. However, this
procedure leaves the Bedroom reachable only through the
terrace, which is not ideal. To fix this problem, we computed
the probability of connecting various types of rooms in H2
to other types of rooms in H5. Since in the vector embed-
ding reveals that the Bedroom cluster is close to the Corridor
cluster, our composition algorithm decides to add an auxiliary
edge between Bedroom and Corridor with high probability.
DNN based projection of rooms on latent vector space obeys
proximities of types of rooms in the given design samples.

Note that in case there are no obvious candidate pairs of
rooms to connect by an auxiliary edge, we may need to add
new types of rooms in the composed design. The type of
rooms to be added can be determined by examining the vec-
tor embedding. For example, if the building blocks contain
Bedrooms and Living rooms but not “connective” rooms such
as Corridors, the latter type of room is needed to connect to
the former types. This can be seen as a problem of finding a
path from the Bedroom cluster to the Living room cluster.
Thus, an intermediate room of type “Corridor” can be added
to the composed design in an algorithmic fashion. Or, for
example, as seen in the composition of H2 with H5, the result-
ing graph has no kitchen, in such a situation a Kitchen node
can be added through vector embedding - which depicts
Kitchen spaces close to Dining, Terrace and Entrance nodes.

Translating graphs into conventional modes of architectural
representation: Afterwards we inspected whether the new
compositions breaks any geometric constraints. The subgraphs
in themselves may work well, but when put together they may
form impossible assemblies. Therefore, we applied techniques
to determine the fitness of the generated designs, such as pla-
narity constraints.® Once a solution has been validated it can

BLACK BOX: Articulating Architecture’s Core in the Post-Digital Era

Entrance

arget Function

Livability

437

100

Liw‘;iong Bedroom Terrace
Living 212" Balcony 207
107 219
Corridor Balcony
102 Corridor 220
101
\ Foyer
Corridor Bedroom 20
208 210 S\Di"i"g
Dining . Z 50— it
€5 L;gr;;g / \ Playroom Kitcl gn/ J 201
T 209 pantry_-203 Bdm
ZlE Bedroom 20 206
215
H2 Activation =10
Regression = 0.3532
Target Function

Bedroom
107

o

Terrace

Sleepability

Closet

103 Bedroom

H5: Activation = 09999
Regression = 0.3

H8: Activatior

=09999
Regression = 0.2038

Torace
e
l 206 Bedroom /
Corridor / Storage __ 707 Closet_ ‘nodrcom " F\oyey
e S m 10 104 02
___ Dining ‘;’SO”
ne 12 | storage I.nunge \
/ \ 204 5
Bath
205 oset
B Living 202 D\‘g‘gq
101
n7 /
Laundry
n3
Bath
na
HS5: Activation =10 H4: Activation = 0.9900 H2: Activation = 0.9999
Regression = 02939 Regression = 0.2939 Regression = 01911
Figure 3. Discovered building blocks specific to the following target functions: livability and sleepability.
Bedroom
Entrance Closet 107
Entrance 00 103 Bedroom \
Living 206 Bed
i ; Yy B \
éo"“"" v “corridor —
200 Terrace
Dining & 207
st / / \ stouoe /
‘ Bath Pool
Terrace Dining Living n7 |
’ k. o1
/ D
N | Corridor /
Pool ‘Bedroom 20 |
5\Dlnlog
Z 202 —— Living
Kitcl g/ 1
Pantry .~ 203 Bath
204 20¢
H2 t/ B HS H2 b HA H8 P HS
Terrace
Pantry Tc‘rusc Closet
Kitchen < 1 Bedroom
20€
/0 Bed:
Rt tadroom Bar s / |\ Corridor ‘ Storage oo
4 / 116
‘\\\ / \\ // Terrsce / = corridor
Lounge \ / Corridor / / Storage
> " Dining Bath ‘\ i
Dining RO ™ — Closet
o . xuc[;n/ J ”""'“ !
€ \ Pantry 203 84th
\ Living Ok 20€
oundey |
\v
Bath
H8 P H2 H8 @} Ha
Figure 4. Composing subgraphs into larger assemblies

438 Composing Frankensteins: Data-Driven Design Assemblies through Graph-Based Deep Neural Networks

Vector representation of node 5

5.3 D.10.2/06/0.9

| Hidden layer N

t
&

‘ Hidden layer 1

t)

~
I Topology layer l [Feature layer I -g
Attributes
00/ 10 0 [0{100.20.#
Node ID (one hot) categoricatontinuous
"

e

Input graph
(disjoint) ?E ?

- 27

B
.

Corridor o

.

Dining

.

dim 1

o =, Balcony

ing © o°
s Living « Entrance

:

b

=y
. Terrace

g oy)

S s

“« ® .,
oo o

o

.o

¢+ Kitchen

roomtype
Balcony
sath
3edroom
Closet
Corndor
Dining
gntrance
<tchen
uving
Terrace

Figure 5. DNN based representation learning of types of rooms in a latent vector space while obeying proximities of types of rooms in design samples.

be converted into two-dimensional orthographic drawings or
three-dimensional massing models through an algorithm that
stacks nodes by obeying area and volume attributes, prox-
imities, and connection types. The stacking can occur within a
constrained building envelope, for example, as would be neces-
sary if a new design had to fit into an existing building; or, can be
more loosely stacked, if there are no such spatial restrictions.

CONCLUSION

We showed the potential of training DNNs with graphs to
generate novel compositions and unique designs. DNNs have
been studied well for image and audio applications, however,
graph-based research is limited. We were able to explore vari-
ous DNNs with a limited number of house designs, evaluated
the training set, discerned essential building blocks on functional
performance criteria, and merged them into new compositions
in a mathematically principled manner. This study demonstrates
promising early steps towards automated conceptual design.
Undoubtedly, deep learning offers immense opportunities for
architecture, and further research needs to be conducted to
reach the full potential of neural networks in design exploration.

ENDNOTES

1 Kyle Steinfeld, “Dreams May Come,” in ACADIA 2017: Disciplines & Disruption -
Proceedings of the 37th Annual Conference of the Association for Computer Aided
Design in Architecture (Fargo, ND: ACADIA, 2017).

2 C.Sjobergetal., “Emergent Syntax: Machine Learning for the Curation of
Design Solution Space,” in ACADIA 2017: Disciplines & Disruption - Proceedings
of the 37th Annual Conference of the Association for Computer Aided Design in
Architecture (Fargo, ND: Acadia Publishing Company, 2017)

3 G.Stiny andJ. Gips, “Shape Grammars and the Generative Specification
of Painting and Sculpture,” Information Processing 71, ed., CV Freiman
(Amsterdam: North-Holland, 1972): 1460-1465.

4 M. Ruiz-Montiel et al., “Design with Shape Grammars and Reinforcement
Learning,” Advanced Engineering Informatics 27, no. 2 (April 2013): 230-245.

5 J.P. Duarte, “Towards Mass Customization of Housing: The Grammar of Siza’s
Houses at Malagueira,” Environment and Planning B: Planning and Design 32
(2005): 347-380.

D. Duvenaud et al., “Convolutional Networks on Graphs for Learning Molecular
Fingerprints,” NIPS ‘15: Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 2 (Cambridge, MA: The

MIT Press, 2015).

H. Ehrig and H.J. Kreowski, “Pushout-Properties: An Analysis of Gluing

Constructions for Graphs,” Math. Nachr. 91 (1979): 135-149. doi:10.1002/

mana.19790910111.

John M. Boyer and Wendy J. Myrvold, “On the Cutting Edge: Simplified O(n)
Planarity by Edge Addition,” Journal of Graph Algorithms and Applications 8, no.
3(2004): 241-273. doi:10.7155/jgaa.00091.

